test_metrics#
from pssr.predict import test_metrics
- pssr.predict.test_metrics(model: Module, dataset: Dataset, device: str = 'cpu', metrics: list[str] = ['mse', 'pixel', 'psnr', 'ssim'], avg: bool = True, norm: bool = True, callbacks=None)#
Computes image restoration metrics of predicted vs ground truth images.
Only uses evaluation images if applicable. Set
val_split=1
in dataset to use all images.- Parameters:
model (nn.Module) – Model to recieve low-resolution images.
dataset (Dataset) – Paired image dataset to load data from.
device (str) – Device to train model on. Default is “cpu”.
metrics (list[str]) – Metrics to calculate out of “mse”, “pixel”, “psnr”, and “ssim”. Default is all.
avg (bool) – Whether to return a single averaged value per metric. Default is True.
norm (bool) – Whether to normalize prediction image intensities to ground truth. Default is True.
callbacks (list[Callable]) – Callbacks after each prediction. Can optionally specify an argument for locals to be passed. Default is None.
- Returns:
Dictionary of metric names and outputs.
- Return type:
metrics (dict[str, Any])